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We study the standard nontwist map that describes the dynamic behaviour of magnetic field lines
near a local minimum or maximum of frequency. The standard nontwist map has a shearless invari-
ant curve that acts like a barrier in phase space. Critical parameters for the breakup of the shearless
curve have been determined by procedures based on the indicator points and bifurcations of period-
ical orbits, a methodology that demands high computational cost. To determine the breakup critical
parameters, we propose a new simpler and general procedure based on the determinism analysis per-
formed on the recurrence plot of orbits near the critical transition. We also show that the coexistence
of islands and chaotic sea in phase space can be analysed by using the recurrence plot. In particular,
the measurement of determinism from the recurrence plot provides us with a simple procedure to dis-
tinguish periodic from chaotic structures in the parameter space. We identify an invariant shearless
breakup scenario, and we also show that recurrence plots are useful tools to determine the presence
of periodic orbit collisions and bifurcation curves. Published by AIP Publishing. https://doi.org/10.
1063/1.5021544

Many relevant problems in fluids and plasmas can be
described, in the language of Hamiltonian dynamical sys-
tems, by the use of nontwist maps. The common feature
of these systems is the presence of shearless invariant
curves, which affect the transport properties in phase
space. Actually, the shearless curve behaves like a bar-
rier separating trajectories in the phase space. However,
even after breakdown of the shearless curves, the rate
of chaotic transport depends on the system parameters.
We analyse the barrier breakup in the standard nontwist
map by means of the determinism, a quantification from
recurrence plots. In this work, we also show that deter-
minism can be used to identify the island chain collisions
and separatrix reconnection.

I. INTRODUCTION

The standard nontwist map (SNM) was introduced by
Del-Castillo-Negrete and Morrison;1 it violates the twist con-
dition along the shearless curve.2 The twist condition asserts
the nondegenerancy of the frequencies. This map presents
interesting phenomena such as island chain collisions and
separatrix reconnection.

Magnetic field lines in toroidal plasma devices can
be described by area preserving nontwist maps.3 Martins
and collaborators4 used the SNM to study transport bar-
riers in plasmas confined in tokamaks. Studies concerning
internal transport barriers are important to improve plasma

a)Electronic mail: antoniomarcosbatista@gmail.com

confinement and stability properties. The SNM also appears
in fluids, as in the description of transport in quasigeostrophic
flows.1 Transport properties in nontwist maps were investi-
gated by Szezech and collaborators.5 They showed that the
barrier escape time and barrier transmissivity have sensitive
dependence on the parameters. The identification of barriers
has been done by means of the finite-time Lyapunov expo-
nents or the finite-time rotation number.6 One of the pioneer
methods to detect breakup barriers was based on residue
criteria and applied in the standard map7 and nontwist map.2

We investigate the possibility of using the recurrence
quantification analysis (RQA) technique to characterise the
SNM dynamics, in particular, for studying barrier breakup.
RQA was proposed by Zbilut and Webber,8,9 and it has been
widely utilised for the investigation of complex systems.10,11

RQA was considered in studies about the complexity of
dynamics in discharged magnetised plasma.12 The determin-
ism is a measure calculated from the RQA. It is the percentage
of recurrence points which form diagonal lines in the recur-
rence plot. Determinism analysis has been applied to different
science fields.12

In Hamiltonian systems, the use of recurrence time is a
useful tool to distinguish chaotic from quasi-periodic orbits.
Slater’s theorem states that if there is a quasi-periodic orbit,
at most three different recurrence times are expected; oth-
erwise, the orbit is chaotic.13 In the literature, this theorem
was applied successfully to detect the presence of barriers
in Hamiltonian systems, for instance, the twist map and the
non-twist map.14 The use of the recurrence analysis was
also done to determine the breakup of shearless torus in

1054-1500/2018/28(8)/085717/6/$30.00 28, 085717-1 Published by AIP Publishing.

 06 D
ecem

ber 2023 18:41:19

https://doi.org/10.1063/1.5021544
https://doi.org/10.1063/1.5021544
https://doi.org/10.1063/1.5021544
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5021544&domain=pdf&date_stamp=2018-08-28


085717-2 Santos et al. Chaos 28, 085717 (2018)

non-Hamiltonian systems.15 Moreover, a common behaviour
of these Hamiltonian systems is the presence of sticki-
ness effect. The existence of stickiness causes long chaotic
trajectories around the neighbourhood of some islands. Zou
and collaborators16 showed how RQA provides a useful way
to detect the dynamical transitions from chaotic to sticky
regime.

Our main result is to show that determinism analysis,
i.e., the quantification of determinism provided by the RQA
approach, can be used as a diagnostic of barrier breakup in
the SNM as well as the island chain collisions and separatrix
reconnection. The study concerning the breakup of shearless
invariant tori is used to describe transport barriers in magnetic
field lines in toroidal plasma devices.17 In this work, we iden-
tify in the parameter space by means of determinism analysis
not only the barrier breakup but also the island chain collisions
and separatrix reconnection.

This paper is organised as follows: Sec. II introduces the
SNM and the transport barrier. In Sec. III, the determinism
analysis is proposed for the identification of relevant phenom-
ena such as the barrier breakup. Section IV exhibits collision
scenarios. In Sec. V, we draw our conclusions.

II. STANDARD NONTWIST MAP

Nontwist maps are area-preserving maps which violate
the twist condition along an invariant curve, known as shear-
less curve, in phase space. We consider the SNM proposed
and described in Ref. 18 as

xn+1 = xn + a
(
1 − y2

n+1

)
,

yn+1 = yn − b sin (2πxn) , (1)

where a and b ∈ R are parameters, x ∈ [−1/2, +1/2)

and y ∈ R are phase space coordinates. The variable n =
0, 1, 2, . . . , N denotes the discrete time. Figure 1 shows the
phase space for some values of the SNM control parameters.
In Figs. 1(a)–1(c), we observe a separation of the phase space
into two regions, one below and the other above. A shear-
less curve (blue line) is responsible for diking the transport

FIG. 2. Transport barriers of the SNM for (a) a = 0.455 and b = 0.8,
(b) a = 0.455 and b = 0.847. The region in blue (orange) colour represents
103 initial conditions on the line y = 1 (y = −1) iterated by N = 2 × 104.

of field lines between the regions. There are chains of islands
separated by nontwist invariant tori. In Fig. 1(d) there is no
more shearless barrier curve, and as a consequence the two
regions merge in the phase space.

Figure 2 shows the phase space of orbits in different
colours, starting from several initial conditions. In our sim-
ulations, we consider N = 2 × 104 iterations and 103 initial
conditions on the line y = 1 (y = −1) to obtain the blue
(orange) orbits. In Fig. 2(a), we consider the same parame-
ters as in Fig. 1(c), the shearless curve can be estimated to be
located at the boundaries between the two different coloured
regions. In Fig. 2(b), generated with the same parameters as in
Fig. 1(d), the shearless curve does not exist and the transport
of trajectories throughout the phase state is now possible.

Nontwist maps have been considered to describe mag-
netic field lines in toroidal plasma in stellarators and
tokamaks.19 With regard to tokamaks, the appearance of
internal transport barrier in experiments can be analysed by
means of nontwist maps.20 They have also used in studies

FIG. 1. Phase space of the SNM for (a) a = 0.354 and
b = 0.6, (b) a = 0.364 and b = 0.6, (c) a = 0.455 and
b = 0.8, and (d) a = 0.455 and b = 0.847. The blue line
represents the shearless curve obtained by the evolution of
the IP (1/4,b/2) as the initial condition in Eq. (1).
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about flows in fluid dynamics.21 Moreover, in mathematics,
their importance is due to the fact that around the non-
twist region they do not behave according to the KAM and
Poincare-Birkhoff theorems.22

III. RECURRENCE ANALYSIS

The recurrence plot (RP) is a visualisation of a square
matrix where a dot is placed at (i, j) whenever �xi is nearby to
�xj.23–25 The RP can be mathematically expressed as

RPi,j = �(ε − ||�xi − �xj||), (2)

where �xi ∈ R
m (i, j = 1 . . . k), k is the number of possi-

ble states �xi in m-dimensional space, ε is the return radius
(ε = 0.05), || · || indicates the Euclidean norm, and �(·) is
the Heaviside function. The interesting patterns observed in
RPs led the authors in Ref. 8 to develop recurrence quan-
tification analysis (RQA) to quantify the structures present in
the RPs. Thus, several diagnostics26,27 can be obtained from
Eq. (2), for example, recurrence rate, laminarity, determinism,
etc. Following Ref. 27, determinism is quantified by

DET =
∑k

l=lmin
lP(l)

∑k
l=1 lP(l)

, (3)

where P(l) represents the probability distribution of diagonal
lines of length l (lmin = 2) present in the recurrence plot. A
diagonal line of length l indicates whether there are two timely
separated pieces of the time-series that remain ε-close by a
time of l. The more deterministic a system is, the longer the
diagonal lines will be. Stochastic systems have very short or
no diagonal lines at all (i.e., no two adjacent points can be
seen in the diagonal). Therefore, the determinism measure is
the rate between diagonal lines with length larger than lmin and
all the points with no adjacent neighbour (l = 1). The more
(less) predictable a system is, the closer to 1 (zero) will be the
measure DET.

Figure 3 exhibits the average value of the determinism in
the colour bar [(DET)] for N = 104 times. We split N in
intervals (windows) to compute the determinism. Each win-
dow has 400 points (k = 400) of the trajectory and there are

300 points overlapping between two consecutive windows.
Thus, each window provides a DET value and the mean deter-
minism is calculated at the end of time. In Figs. 3(a)–3(c) it is
possible to identify the transport barrier in the shearless region
that are characterised by high values of the determinism mea-
sure DET. Comparing the results of Fig. 3 with Fig. 1, we
verify that the regions of Fig. 3 marked by red and yellow cor-
respond to the regions quasi-periodicity (islands) and the blue
corresponds to the regions chaoticity. In Fig. 3(d), we see the
mixing of chaotic orbits due to the breakup of the transport
barrier. Comparing Fig. 3(c) with Fig. 1(c), we verify that the
determinism allows us to identify those barriers in the phase
space by noticing that the barriers have a distinct dissimilar
colour representation appearing in a level of colour far from
both red and dark blue extremes.

IV. COLLISION SCENARIOS

In bidimensional maps, such as the SNM, the invariant
curves represent absolute barriers in the phase space.14,17 Pio-
neering methods to identify the barrier break can be found in
Refs. 7 and 28. Greene7 explored the relation between KAM
surfaces and periodic orbits through the residue. The Greene’s
residue criterion can be used to determine the existence or not
of invariant tori. Those methods need a long time iteration
(N ≈ 106) to obtain the shearless curve by using one of the
following indicator points (IPs):

z(±)
0 = (±1/4, ±b/2), z(±)

1 = (a/2 ± 1/4, 0), (4)

as initial condition for Eq. (1). The indicator points are fixed
points of some of the symmetries of the SNM that are on the
shearless curve whenever it is not broken.29

Figures 4(a) and 4(b) exhibit at the boundary between
the two colours the parameters for the breakup of the last
shearless curve in the parameter space a × b. The colour bar
identifies barrier break by means of the method shown in
Ref. 17. We iterate the indicator points (IPs) for a long time
(N = 106) and a given pair of values of a and b, then if these
trajectories scape of a given interval (|y| > 20), the barrier is
broken (yellow region), otherwise, the barrier still exists (blue
region).

FIG. 3. Determinism phase space of the SNM for (a)
a = 0.354 and b = 0.6, (b) a = 0.364 and b = 0.6, (c)
a = 0.455 and b = 0.8, and (d) a = 0.455 and b = 0.847.
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FIG. 4. Barrier breakup of the SNM using two methods.
Figures (a) and (b) are calculated through the IP according
to Ref. 17, where the blue (yellow) region represents the
existence (breakup) of the shearless curves. Figures (c) and
(d) are obtained using standard deviation of the determin-
ism, where the black region corresponds to the bifurcation
curves.

In this article, we introduce another procedure to deter-
mine the shearless curve breakup. This procedure is based on
the recurrence plot analysis and is simpler to be applied than
the previous procedures. Due to the fact that the determinism
values change on the shearless curve, as shown in Fig. 3, we
calculate the standard deviation of the determinism to iden-
tify the existence of barriers. The standard deviation of the
determinism is given by

σ =
√

〈(DET)2〉 − 〈DET〉2. (5)

In the parameter spaces of Figs. 4(c) and 4(d), we show by
colour coding the value of σ computed using IP as initial
condition. The presence of the barrier (or not) is obtained
through the analysis of the RQA measure (DET). The colour
bar represents the standard deviation of the determinism for
short time (N = 104) of the IP. We utilise moving windows
of length k = 400, where 300 points overlapped between two
consecutive windows. Each window provides a DET value
and the standard deviation is calculated at the end of time. The
blue and yellow regions not only are similar to regions found

in Figs. 4(a) and 4(b) (showing the value of DET in colour
code) but are also obtained with less iterations, as compared
to if we had reproduced these figures considering the values
obtained only for the determinism measure DET. The novelty
is the black region that corresponds to parameters represent-
ing when the system bifurcates. The blue and yellow regions
represent parameters for which the shearless curves exist or
do not, respectively. The bifurcation parameter curve lying
within the black region appears for parameters that cause a
collision between up and down periodic orbits on a symmetry
line when the SNM parameters are varied.2 The points A, B,
C, and D in Fig. 4(c) indicate some values of a and b where
the bifurcation curves occur (black region) in the parameter
space.

We plot in Fig. 5 the phase space for the values of a and b
according to points A [Fig. 5(a)], B [Fig. 5(b)], C [Fig. 5(c)],
and D [Fig. 5(d)], as shown in Fig. 4(c). The phase spaces
display the dipole formation after the hyperbolic collision.2

In Fig. 5(a), it is possible to observe the collision of central
islands, and similar behaviour occurs in Figs. 5(b)–5(d), but
for orbits of different periods.

FIG. 5. Periodic orbit collision in SNM for (a) a = 0.0413
and b = 0.71, (b) a = 0.21 and b = 0.69, (c) a = 0.28 and
b = 0.69, and (d) a = 0.782 and b = 0.39. These param-
eters values correspond to the points A, B, C, and D,
respectively, showed in Fig. 4(c).
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FIG. 6. (a) Indicator and bifurcation curves, and (b) stan-
dard deviation of the determinism. Phase space for (c) a =
0.91856 and b = 0.21504, and (d) a = 0.91856 and b =
0.21640 showing collision and annihilation, respectively,
of the periodic orbits (q = 7 and p = 8), where the green
point represents the indicator and the blue line denotes the
shearless curve.

An orbit with period p is an orbit M p(xi, yi) = (xi + q, yi),
where q is an integer number, consequently, the winding
number ω = q/p is rational. For orbits with the same sta-
bility type for both the up and down orbits, namely, orbits
with even period, the symmetry lines S1 = {(x, y)|x = 0} and
S3 = {(x, y)|x = a(1 − y2)} can be used to obtain the numeri-
cal bifurcation threshold.30 For even-period orbits, the bifur-
cation values for the parameters a and b (indicator curve Ic),
it can be obtained from the solution of M pzj

(±) = zj
(±) and

M p/2zj
(±) = zj

(∓), where zj
± are the indicator points defined

in Eq. (4).30

Figure 6(a) exhibits the indicator curves Ic1 for S1 and
Ic3 for S3, and it also shows the curves BcS1 and BcS3
that are numerically calculated by means of the winding
number, for a small region of the parameter space. The
winding number is given by ω ≡ limi→∞(xi/i), where an
x-coordinate is “lifted” from T to R. We consider i = tr + ts,
where the variable tr = 3 × 106 is the transient time and
ts = 2 × 105 is the time required for the limit to exist.
ω is calculated on the symmetry lines S1 = {(x, y)|x = 0}
and S3 = {(x, y)|x = a(1 − y2)}.30

We obtain the Ic1 and Ic3 curves by means of the stan-
dard deviation of the determinism, as shown in Fig. 6(b) (red
lines). For a fixed a value and two distinct b values, the SNM
presents collision [Fig. 6(c)] and annihilation [Fig. 6(d)] of the
periodic orbits for the red bottom and top lines, respectively.
Therefore, through the determinism measure we can estimate
the location of the breakup barrier in phase space as well as
the bifurcation curves (collision of elliptic orbits and collision
of nonsymmetric hyperbolic orbits) in the parameter space for
orbits with even period found in the SNM. Then, determin-
ism analysis can be used as a tool to identify the bifurcation
threshold in the SNM with period-even orbits.

V. CONCLUSIONS

We consider the SNM that is an area-preserving map
and violates the twist condition. This map is used in studies

concerning barriers in plasma and fluids. The SNM shows the
breakup of invariant tori and separatrix reconnection.

In this work, we propose the use of determinism analysis
to study the breakup of shearless invariant curve and bifur-
cation threshold for orbits in the SNM. We show that the
determinism allows us to identify barriers in the phase space.
By means of the standard deviation of the determinism we find
the barrier breakup region in the parameter space. Moreover,
the determinism analysis, when compared with other meth-
ods, needs less time iteration to compute the indicator points
that belong to the shearless curve.

Through the standard deviation of the determinism, we
identify in the parameter space not only the barrier breakup
region but also the region where the bifurcation curves occur.
The bifurcations are due to the collision of elliptic orbits and
collision of nonsymmetric hyperbolic orbits. In addition, we
performed our analysis with DET, but we also computed and
verified that similar results can be achieved based on other
RQA measures, such as recurrence rate and laminarity.

In future works, we plan to analyse how geometric
characteristics of recurrence network analysis31 for nontwist
systems could detect the breakup of shearless invariant curve.
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